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Given «, B> —1, let p,(x)=p'*P(x), n=0,1,2,... be the sequence of Jacobi
polynomials orthonormal on (—1,1) with respect to the weight u(x)=
(1 —=x)*(1+x)”. Denote by (Sy f)(x) the Nth partial sum of the Fourier-Jacobi
series of the funetion S on (—1,1), so that (Sy f)(x)=3X_, a,p,(x), with a,=
j‘ (x) pn(x) u(x) dx. For fixed p € (1, o0), we characterize the weights w such that
limy . Ly [L(Sy £)(x) = f(x)] w(x)|” u(x) dx =0 whenever |1, |f(x) w(x)|” dx
< o0, the weights w such that lim,_, ., sup; ., /I[SEN w(x)? u(x) dx]"7 = () whenever
JL1 1/(x) w(x)|? dx < o0, and the weights w such that lim,y , ., sup, ., AUE” w(x)?

u(x )dx]”’—() whenever (¢ [fz, w(x)dx]"? di < oo; here EV={xe(=1,1);
[(Sy f(x)— |>/L} and F, 7{\6(—1 1): [f(x) |>/L} ) 1997 Academic Press

I. INTRODUCTION

Let u(x)=u, 4(x)=(1—x)"(1+x)”, a, > —1, be a Jacobi weight and
let p,(x)=p'* ’”( Y=, X"+ ey V> 0, n=0,1,2, .. be the corresponding
sequence of (orthonormal) Jacobi polynomials

fl P X) pu(x)u(x)dx=9,,, m,n=0,1,2,... (1)

For example, p!~'/* *1/2)(x)=(2/\/7;) cos(ncos ' x), n=1,2,.., and the
p%%(x) are the (normalized) Legendre polynomials. An extended treat-
ment of Jacobi polynomials can be found in [20]; in particular, one finds
on p. 198 the asymptotic formula

p(cos 0)= \/i u(cos 0) 2 [cos(MO+y) + (nsin 0) ' 0(1)] (2)
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for en '<O0<n—cn', ¢>0 a fixed constant, M =n+ («+ f+1)/2, and
y=—(a+1/2) n/2.
Given a function satisfying f‘_l |f(x)| u(x) dx < o0, denote by (Sy f)(x)

the Nth partial sum of the Fourier-Jacobi series of f, namely
N

Yo a,p,(x), with a,=[", f(x) p,(x) u(x) dx. The purpose of this paper
is to characterize the nonnegative, measurable (weight) functions on
(—1, 1) such that for fixed pe (1, c0) Sy f converges to f in one of the
following senses:

1. weighted strong sense

tim [ ISy 0 = A0 w01 ) dx =0, (3)

N— oo J__

whenever

[ 1) w17 () d < oo
1

2. weighted weak sense

1/p
lim supxU\,w(x)ﬂu(x)dx} -0, (4)

N—o>ow A>0 p

EY={xe(—11):|[(Syf)(x)—f(x)| > i}, whenever

fl | f(x) w(x)|? u(x) dx < oo;

3. weighted restricted weak sense

1/p
lim sup){f w(x)”u(x)dx} —0, (5)

Noow >0 ¥

EY = {xe(—1,1): [(Sy f)(x)— f(x)] > A}, whenever
oo 1/p
j “ w(x)”u(x)dx} di < o0,
Fy={xe(—1,1): [f(x)] > i}.

Any strong weight is a weak weight and any weak weight is a restricted
weak weight. This is readily seen from the following relations between the
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Lorentz L?*(w*u) and L?'(w”u) norms and the usual Lebesgue L?(w”u)
norm:

1/p

lp 1
el =sup 2| [ ey uodx| " <| [ e w1 ) v

>0
1/p
< f {J )" u(x) dx} dx = lgll L (whu) »

G,={xe(—1,1):|g(x)| >4}. We will show that, in fact, the weak weights
are the same as the strong weights.

It will be convenient to work with the trigonometric form, p,(cos ), of
the Jacobi polynomials for which

[ " (cos 0) p,(cos 0) u(0) d0=5,,  mn=0,1,2, ..,
0

where u(0) =2 sin**'(0/2) cos?*'(0/2) and a,, = [ f(¢) p.(cosd)u($) do,
f(#)= f(cos ¢). With this notation, it is seen we have the usual Fourier
cosine series when o« = ff = —1/2. Moreover, (3), for example, becomes

Jim [T IL(Sy /)0 = 0] w(O))7 u(0) do =0,
whenever [ | f(¢) w(¢)|” u(¢) dp < co. Here, w(0) =w(cos 0).

Earlier welghted convergence theorems dealt with Jacobi weights w(x) =
c(1+x)*(1—x)® or, equivalently, w(0)=csin***(0/2)cos*2+1(0/2).
Thus, the classical 1927 result of Riesz [ 19] asserts (4) holds for 1 <p < o
when o= f = —1/2 (so that u(6)=1/2) and w(8) = 1. The pioneering 1948
paper of Pollard [ 18] characterized the range of indices p that work in (4)
for a, f= —1/2 and w(0) = 1; for instance, in the Legendre case o = =0,
the range is 4/3 <p <4. Muckenhoupt proved the definitive theorem on
Jacobi weights for a, f> —1 in [10]. Askey [1] used such results to
investigate the weighted strong convergence of Lagrange interpolation
polynomials based on the zeros of Jacobi polynomials.

Badkov [3] studied the generalized Jacobi polynomials satisfying (1)
with respect to u of the form

u(x)=H(x)(1+x)* (1 =x)" TT [x—x, 1™
k=1
here, o, S,y > —1, —l<x;<---<x,,<1, H(x)>0 on (—1,1), and
|5 w(H, ) dojd < o, w(H, J) being the usual modulus of continuity
of H in C([ —1,1]). He extended Muckenhoupt’s results to Fourier
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series in such polynomials for the generalized Jacobi weights w(x)=
C+x)"(1—x)2TIy_, |x—x,|"% the x, are the same as in u(x) and
A, B, I'.> — 1. Nevai in a series of papers, [ 16], completed the above-
mentioned work of Askey for generalized Jacobi polynomials.

Chanillo [4] proved the first restricted weak convergence theorem for
Fourier—Legendre series when p =4/3 or p =4 and w(6) = 1. The result for
this weight was extended to all Fourier—Jacobi series by Guadalupe, Perez
and Varona [5]; for example, when a>f> —1/2 and a> —1/2, they
obtained restricted weak convergence when p=4(a+1)/(2a+3) or
p=4(a+1)/(20+ 1), values of p for which they show weak convergence
doesn’t hold.

The general weighted strong convergence problem for Fourier series
(ae=p= —1/2) was solved by Hunt, Muckenhoupt, and Wheeden [7].
A weight w yields (4) in this case, for fixed pe(l, oo), if and only if
we 4,0, n):

1/p

][ ] <

where, as usual, p’ = p/(p — 1) and the constant C >0 is independent of the
interval < (0, n) with length |I|.

A standard argument involving the Banach-Steinhaus theorem shows
(3) is equivalent to

108 10 w@))7 w0 d0 < C [ 1116) W) u(@) dd). (6)

(4) is equivalent to

sup | [ woruoran] " <c[ @ an a0

A>0

and (5) is equivalent

1/p e 1/p
supAU W(H)Pu(f))dﬁ} <Cj “ w(qﬂ)Pu(qﬁ)dq’)] ;. (8)
EY 0 F,

A>0 A
here, EY={0€(0,n): |(Syf)0)| >}, F,={¢e(0,n):|f($)|>72} and
C>0 is independent of f and N.

The converse of Holder’s inequality for Lebesgue and Lorentz spaces
(see [6] for the latter) readily yields
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LEMMA 1. The condition

J, (@) w9 dip < oo (9)
is necessary and sufficient to guarantee
J, 1A utg) dp < co, (10)
whenever
|| 1) w17 () dp < .
Similarly,
b e =sop | [ w@ranrar] <o, an

E,={¢€(0,n):w(p) ?>2}, is necessary and sufficient to have (10)
whenever

J [L ()" u() dgb} <o,

F,={¢e(0,7n):1/($)| > 2}

The condition (10) is required, of course, in order that the Fourier—
Jacobi series of f be defined. Further, the constant function p(0) (and
hence S, f for all N) belongs to L?(w”u) (equivalently to L”*(w”u)) if and
only if

j” w(0)? u(0) db < . (12)
0

With these facts in mind, we call weights satisfying (9) and (12)
S-admissible, while weights for which (11) and (12) hold will be said to be
RW-admissible.

We can now state our main results.

THEOREM 2. Fix o, > —1 and pe(l, ). Let u(@)—um H0)=2"%F
sin®*1(0/2) cos?*1(0)2) and, given f with |5 |f(¢)| u(¢) dp < oo, let
(Sx /O =Xy a,p,(cos 0), a,= [z f(9) p.(#)u(d) d¢ be the Nih par-
tial sum oj the Fourier—Jacobi series of f. Then, given an S-admissible weight
w on (0, 1), the following are equivalent:
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(a) lim J IL(SNO) = f(0)] w(O)]” u(0) db =0,

N — o

whenever [ | f(¢) w($)|” u(¢) dp < oo

1/p
(b) lim sup A “ w(0)” u(0) de} —0,

N— oo A>0

EN=1¢€(0,7): [(Sxf)P) —f(§)|> 4}, whenever 5| f($) w(h)|” u(h) dp < o0;

(c) There exists C>0 such that

1 Up 1] - U
{MLW(Q)”M((‘))dﬁ} L”Lw(ﬁ) P u(0) dﬁ} <C (13)

and

! 0 0)' —#7> do s 0) " u(0)' —7" do " 14
= P -r = —p —r <
i Loy rzao| | o) oy rRan| <
for all intervals 1 = (0, ). When a, f= —1/2 (14) implies (13), so (14) alone
is required in that case.

THEOREM 3. Let o, f, u, f, and Sy f be as in Theorem 2. Then, in order
that the RW-admissible weight w on (0, 1) satisfy

1/p
lim susz ,w(e)ﬂu(e)de} -0,
£}

N—>oo >0

={0e(0,7): (S /X010 > A}, whenever [ [, w(#)” u(@) 1"
di< oo, F,={$e(0,n): |f(¢ )| > A}, it is necessary and sufficient that there
exist C>0, zndependent of all intervals 1<(0,7) and measurable sets
Ec (0, ), related to I as specified below, such that

[e01h _ [a@r ad )y s
Ludrdp =T, m0)7 ) do gt

and
SEu(qS)qus CPEW 9)" u<¢>d¢}”ﬂ VEc (0.0 s
5w dp = L) u(g) df Ee0.0) 1o
[ u(9)"” dg C[SFW )Pu(aﬁ)dﬂl VEe (0. nh2 17
w0y sintg2) = | fowtgrugrag) - TEEOm (D
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when 0 <0< ¢/2, and

()2 dp [ [ow(d)? u(d) dp] "
[z (o) dg C[fzww)ﬂuw) de vEc(@m)  (18)
[, ()" dg [ow(d)? uld) dp 1" x
u0)" cos(¢/2><c[ szw(mpuw)f’udqs} vES (2’(’)’ (19)

when /2 <0 <.

A crucial element in the proof of a weighted convergence theorem is an
alternative to the formula of Christoffel-Darboux for the Dirichlet kernel,
K, due to Pollard [18]:

N

K0, ¢)= 3. p,(cos0) p,(cos )

n=0

=ayhy(0, ¢, N) = Bn[ 720, ¢, N) + h3(0, ¢, N)], (20)

in which limy _, . ay=limy_, .. fy=1, 1,(0,¢, N)=P . (cosO) py_ (cos ),

Py 1(cos ) gn(cos §)

100 N =5 a0+ )2) sin((0—)72)
and
(0, 6, N) = o 0, N),
with ¢x(cos ¢)=sin® ¢ p&+F+D (cos ). To use (20) we will rely on the
fact that [20, p. 169]
PA(C0S ) = by () 5y ()~ Ve () A1) (21)

where s,() =sin(y/2) + 1/N, cy()=cos(y/2) + 1/N and |b ()| < C for
all Y and M.

We also require a new estimate, proved in [9], for the kernel,
P*B(r, 0, ¢), of the Poisson integral of f

f,00=3 a,p,fcos )= p=P(r,0,4) f(9) uld) df,

0 0

I8



8 R. A. KERMAN

THEOREM 4. Let p=r"2 Then, for 12<r<1,

1
(1—2pcos(0+¢) +p2)oc+1/2
+ 1

(1 —2pcos(0—¢)+p>)f+12|°

PPy, 0,9)= P(p, 0, )

(22)

in the sense that each side is dominated by a constant multiple of the other.
Here, P(p,0,¢)=(1—p>)/(1—2pcos(0—¢)+p?) is the classical Poisson
kernel.

The proofs of the necessity of the conditions in Theorems 3 and 4 use the
following special case of Theorem 2 in [14]; see also [ 15].

LEMMA 5. Let f be a Lebesgue-measurable function on (0, ). Then,

T 1 T
J, w0 1O o< /2w =5 [ p,eos 0) fON Oy b (23)

II. AUXILIARY OPERATORS

The proof of the sufficiency of (13) and (14) involves a singular integral
operator related to the Hilbert transformation, namely

=) [ am(j;(f)ng) @

as well as the Stieltjes operators

(o= — L g

o sin(6/2) + sin(¢/2)
and

f(9)

(570 = Jo cos(0/2) + cos(¢/2) 9.
It is well-known [ 7] that for fixed pe (1, o0)
J, 10wy do< € [ 11() ()17 dp (24)

if and only if we 4,(0, 7). Moreover,
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LEMMA 6. The condition we A,(0, &) guarantees

J IS +82) 30 w1 do<C [T 179y w7 dp. (25)
Proof. Given =0, there holds
RSO <y j: fgrdp+ | f<¢>‘ff= (P1)(0) +(Qf)(0).
Now,

(PO <M= sip [ 1]

Y]
so, in view of [11],
|1 wonr o< c [ 11i6) wol” do
when we A, (0, 7). Again, the operator Q being the dual of P, we'll have
[ 1o wonr o< c | 116wl do
if and only if
I, 1O w0y 17 do< € [ 119 wig) 1 do

But, the latter is true if w ' € 4,(0, ), which is equivalent to we 4 ,(0, 7).
Hence, when w e 4,(0, n),

| 1S o wolr do<c [ 15y wigl” d
Letting g(¢) = f(n —¢) and observing that w(z —0) e 4,(0, 7) if and only
if w(0) e 4,(0, ), we get
f 1(S21)(0) w(0)|” db = j (S'g)(z — 0) wz — 0)|” df

<C | 1gtd) wim— )17 dg

<c[ 1@ w1 dg.
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The proof of Theorem 3 needs mapping properties of the maximal
operator

d
(M, f)(0)= sup :M

0el=(0,x) SI“(¢)d¢

and the Hardy operators

(PLANOY= (02 u0) 7 [ 119y u(d)'” dp

do
sin(¢/2)

@ N0 =u0) 2 [ fig)us)'? 0<0<n2

and
(P>f)(0)=(cos(6/2)) " u(0) "> f: f($) u($)"* d

n2<0<m.

0 d
(00 =u0) > [ fiyuig)'>

The methods of [ 18, Proposition 1] can be easily adapted to show there
exists C > 0, independent of f, such that

1/p

sup 4 [ L,». Ww(0)? u(6) d@} e f [ L,». Ww($)? u( ) dqﬁ} i,

E,={0€(0,n): (M,[f)(0)>2}, F,={¢e(0,n): |f(¢)| >4}, if and only if
(15) holds.

Concerning the Hardy operators we have the following result obtained
in a collaboration with Bloom and Stepanov.

LEMMA 7. Suppose the weight w# 0 satisfies (12) and

[w@ruyap= [ worupas  0<o<zp. 6

0

Then, there exists C> 0, independent of f, such that

1/p

supi“ﬂww)ﬁu(ﬁ) dﬂ} e J:{sz(qﬁ)”u(qb)dqﬁ} 4, (27)

A>0
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= {0€(0,7/2): [(T)O)] > A}, F; = {$e(0.n/2): | f(§)] > 2}, if and only
zf (16) holds when T= P, and (17) holds when T=Q,.
Again, if w# 0 satisfies (12) and

[w@ruspraps] woruapa  mr<o<s

then, one has (27) if and only if (18) when T = P, and (27) if and only if (19)
when T= Q,; in E, and F, we have 0, ¢ € (n/2, &), in this case.

Proof. The proofs of the four criteria are quite similar. We give the
details for Q,. To begin, observe that (27) is equivalent to the existence of
C >0, independent of measurable £ < (0, z/2) and 1> 0, such that

1/p

A [ J wior uo) de] "< c[ [ @y ) dﬂ , (28)

F,={0€(0,7/2): (QlXE 0)>4}. See [6].
Since w0, 0 < |73 w(¢)” u(¢) dp < o, because of (26).
Thus, for n/4 <0< n/2, 17 amount to

j u(0)' db

1/p
) Sin(0/2)<C“E w(gb)”u(q’))dqﬁ} Ec(0,72). (29)

But, when n/4 <0 <n/2 and E < (0, /2),

1/2 d¢
Q)= | ud)? 2,

for some ¢ > 0 independent of E. Thus, taking A= | u(¢)"? d¢/sin(¢/2) in
(28) gives

¢ L u($)"? mnf:/f/z) U: w(0)” u(0) d@}

1/p

<c|f worupas]”

and (29) follows.
Suppose, then, 0 <8 <n/4. If 6 <¢ <260 and E < (6, n/2),

—1 —1/2 1/2 dlp
Q@)= C ) [ utp)® 2o,
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for some C >0 independent of E, so (Q,xz)(¢)> A whenever

CA
J & u(W)'? dip/sin(y/2)

u(¢) =172 > (30)

But, there exists a constant C,>0 so that (30) always holds with
A= ([, u(y)"* d/sin(y/2))/Cu(0)"* and 0 < ¢ <20. Hence, from (28),

—1/2 1/2 dl?b
u(0) /Lu /sin(lp/2)

1/p

[t o ao

<c|[ worunaw|”

and we obtain (17) by (26).
We next show (17) implies (28). Now, for some C> 0, independent of E,

d
(QIXE)(0)>C7]Z'£(0)71/2 J;: (0. /Z)u )l/zsin(z/z)a

SO,

F,={0€(0,7/2): (Q12:)(0) > 4}

1/2 d¢

C{OE(O,n/Z):u(O)”ZL 0. D S

> Ci}

0 lp
< {9e (0, 7/2): { w(9)” u(9) d¢/j0 w($)" u(@) dﬂ > CIA}

fEmo, 7/2)
by (17)
c {Oe (O.m/2): 2| [ (@) uis) di) "< [ oo | W} —G,.

Thus,
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III. PROOF OF THEOREM 2

Since (7) holds whenever (8) does, we need only show that (13) and (14)
imply (7) and that (8) yields (13) and (14). To prove the former it is
enough to consider f such that g | f(¢) w(¢)|” u(¢) dp = 1. By (20),

(SO <C Y

b4 3
[T h0,0.3) S0 ) do| = € T a(f0.N). 31
k=1
The estimate (21) for p, ., and Holder’s inequality gives

Ji(f, 0, N) =

Pri(cos0) [ pii(eos ) £9) ul4) d¢‘

< Csp(0) =+ V2 e ()~ P+ f: sp(g)~CH12)

xen(9) P | ()] () d
<CO+u0) "] [ [1+u() 2T 1£9)] ulg) db

1p

<C[1+u(6)"?] U w(0) =7 [14+w(0) =217 w(0) do
SO,

[" L 0.N) w0)17 ut0) a0

<C <j w(0)? [1+u(0)~ 217 u(6) do

0

X <j W(0) 7 [1+u(®) 217 u() d9>p1>
<C9

by (13) and (14).
Next, from (21), J,(f, 0, N) is less than a constant times

SN(Q)—(1+1/2) CN(H)—(/f+]/2)

y j"bNH(riﬁ)sin2 $1() sn() " en(@) " P u() di
0 sin((0 + ¢)/2) sin((0 — ¢)/2) :
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where by, (4)] <C, 0<¢ <n. But,
sin ¢
sin((0+ ¢)/2) sin((0 — ¢)/2)
B 1 n sin ¢ 1
~sin((0—¢)/2) | sin((0+¢)/2)
1
sin((0 —¢)/2)”
1

=sn(@—pyp) RO
with
1
RO ) 0 Lin(@/Z)—i—sin(qS/ZJ 0<0<xn/2
A 1
0 [cos(@/2)+cos(¢/2)} 2 <f<m

Thus, setting g(¢) =by1(¢)sind f(¢) sx(d) T3> en(¢) P3P u(g),
we have

Jo(f: 0, N) < CLI(Hg)(O0)] + [(S"+S*)(1g) 1) T sy(0)~*+ 1)
X cp(0) = FHD, (32)

When o, f= — 1/2, it follows from (32) that
J| LI 0.8 w001 u(6) o
<C [T ILICHE)O)| +L(S" + S*)(12)1(0) w(0)]|7 u(0)'~" do
<C | 1g(0) w(9)1" u(g)' "> dg

<C [T 1) w917 () d,

by (13), in view of (24) and (295).
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We illustrate the case min[a, f]< —1/2 by a< —1/2<f5. Here, the
preceding considerations yield {§ [J,(f, 0, N) w(0)]” u(0) d0 dominated by
a constant multiple of

fl[l(Hg)(H) +[(S"+S)(1g))1(0) w(0) u(0)"r S\ (6) ==+
xep(0) P27 do

<C[ 1) w91 u(g) dg,

provided
w(0) u(0)'7 s, (0) =T ep(0) P e 4,(0, 7). (33)

In proving (13) and (14) imply (33) for a given N (with constant
independent of N), only intervals of the form 7= (0, b), 1/N <b < x/2, offer
any difficulty. For such 7, (33) is equivalent to

1 —(oc+1/2) v
{MJW(O)"L{(O)SN(O) « PdO}

J

1 ) . . 1/p
x[mj W(0) =7 u(0) 7 sy (0) 1P d@} <C,
I

with J= (0, 1/N), (1/N, b). This inequality holds when J= (0, 1/N) by (14)
and when J=(1/N, b) by (13).
The proof that

J| LI 0. M) w0017 u(0) do < C [ 11(8) w(@)17 u() d

is similar to the one for J,(f, 8, N).
We now show (8) implies (13) and (14). A simple argument reduces con-

siderations to intervals /< (0, ) of the forms

(1) I=(0,b) b<cn/f2

(i) I=(a,b) b—a<min[a, 7w —b]

(i) 1
for any fixed ¢, 0 <c <1, a value of which will be specified later. We only
look at cases (i) and (ii).

=(a, ) a>n—cn/2,
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Given (8), there holds

1/p

sup [ [ woruorao] <] "o wreas a|

A>0

={0€(0,7): |f(r, 0)]> A}, with C>0 independent of / and re (0, 1),
since

fn0)= Y (NS0 0<r<l.
N=0
Letting 1 —r'?=|1|/6, (22) yields
. /(9) u(g) dg
f(ra9)>W =0, Oel, (34)

whence (8) implies (13) by a standard argument, [ 12].
But (14) (as well as (13)) is equivalent to 4,(0, =), if I satisfies (ii). We
note in passing that a simple consequence of this is that for fixed 4 and B

40 50 0 0
P Z A4’ BY
Ll w(0)? sin” 7 —cos® dt9 <D f w(60)” sin > cos 7 do, (35)

whenever 37=3(x,—|1|/2, x;,+ |1|/2=(x;—3|1|/2, x;,+ 3 |I]|/2) is of type
(i1).

To obtain (14) in case (i), we show (8) implies

1/p

()P ()~ (sin ) dip
J |

1/p'

<[ [wtor o] <c (36)

and observe that, by a similar argument, (8) also ensures

1/r

IRCEOEE]

1/p'

x [ [ w7 u@y =2 sin )2 dﬂ c (37)

Proceeding as in [2, pp. 21-22], we then multiply (36) by (37) and use
Hélder’s inequality to dominate 6~ '~ |3’ (sin ¢) > d¢ by the product of
the integrals over (6, 20) and thus obtain (14).
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Fix 0 € (0, n/4) and consider functions 0 <f =f" x (o, .0)» Where c€ (0, 1/2)

will be determined below. Since p,, (cos @) py . (cos ) is the kernel of
Syi1— Sy, the inequality (8) gives

1p 0 Lp
sup 2| [ wigrugrap | <c| [T wwrawrav] L o)
Ey={¢e(0,n): (Tyf)(¢)| > A}, where
(T )= [ ot ha)(6 g N) () ) . (39)

Set

Sv()=sgn[py . (cosy)] (). (40)
Then, for 6 < ¢ <n/2,

(s > [ 1Lle0s ) Po (s V) JWIL 1Y),

o Isin((¢+y)/2) sin((¢ —y)/2)|

_I"" [Py 4 1(cos @) gn(cos i) f(Y)| u(y)
o [sin((¢ +)/2) sin((¢ —)/2)|

= An(¢) — By ().

ay

We recall here (2)

PP (cos @) =/iu(¢)_l/2 (sin ¢) !
x [cos(M¢ +y)+ (Nsin¢)~'0(1)],

cN'<S¢p<m—cN~!, with M=N+ (a+f+3)/2, y= —(x+3/2) /2.
When N is large (in particular, N > 1/0) it is possible to get pairwise dis-
joint open intervals I, .., 1,, I,=1,N), {,=¢(N), contained in (0, 20),
such that
20

|cos(M¢ +y)+ (Nsin ¢) =1 0(1)| >1/3 on J=1{J I,

and

20
U 31,2(0,20) 31, satisfies (ii).
/=1
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Indeed, for sufficiently large N, (2) together with (23), yields, in addition,

) >k£:ﬁ (sing) "' u(d) "I f )W) @y k=1/4n

for ¢ € J. Again, by (21), we always have
S e () sing )] ()"

sin? ¢

BN(¢)<KJ‘O"HSN(¢) dlﬁ,

0<¢<m/2. On J=J(N), for fixed large N, then

(TnSw)(9) = An(¢) —By(9)

> k(sing) = u() 2 [ | 1= ESV ) ) w2 dp
0 k sin ¢

>k/2(sin ¢) =" u(d)~ ”2f LSO u(y)'> dy,

where ¢ is chosen so that 1—(Ksiny)/(ksin¢)>1—(Ksin 0)/(k sin 0)
>1/2.

Now, there exists C; >0 such that, on 0 < ¢ < x/2, the decreasing function
h(¢) = (sin(¢/2)) =+ satisfies

1
Fh(fﬁ) <(sin )" u(¢) 2 < Cih(9).
This means

J Lisin )" ud) =" w(9)17 ul4) do
<Ct [ [hd) w($)1" u(9) db
<LCMO)1” | wig)” uld) do
<S[22C, int )17 | wig)” ul) di

< [2“+3/2C1 ]p Hh X Hil"‘*(wl’u)

<[2772CT17 Nsing-)) ™ u ™ Pl e ury-
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Thus,

c [y wl up) dy
> 1T Sl reun

= (k/2)" (i) 5 U ) ) 2 dy |

> (k/2)r [2*2C] 7 L [(sind) ™" u(d)™ "> w($)]1” u(¢) di

V4

| [ i

=D (k2)7 (27 22CT) 2 [ @) u( @) G ) dp

| [ 1 w2 a |

Finally, taking the supremum over f'such that {5’ | /() w(y)|” u(y) dy =1,
we get (36).

IV. PROOF OF THEOREM 3

Sufficiency. Using the estimate (31) for S, f we need only show
”']k(f; T N)H LPP(wPu) < C HfHLI’l(wl’u)a k = 17 2’ 35 (41)

where C>0 is independent of f and N. The argument in the proof of
Theorem 2, though with Holder’s inequality for Lorentz spaces, gives

Ji(f2 0, N) < C1+u(0)~"?] f: [1+u(¢)="211f(¢)| () dp

SCLL+u(0) 2111 +u—1?) WP ey || 2ot oray -
In view of Lemma 7, P, + P, and Q, + Q, are bounded from L”'(w”u) to
L?*(w*u). The former means (§ |f(¢)| u(¢)"*dp < oo for all fe L7 (w’u)

or, equivalently,

™2 =P oy < 003 (42)



20 R. A. KERMAN
the latter means

flee™ ]/2” Lr=(whu) < O0.
Thus,

[, f5 N)l LP*(wPu)

< C Hl + u_l/z” LPP(wPu) ”(1 + u_l/z) M/_PH LP'®(wPu) |m| LPY(wPu)

< C ”f” LY (wPu)»

by (11), (12), (42), and (43).
We next show that, with

8(@)=by 1(§)sin ¢f($) sy(d) =12 en ()12 u(g),

Jo(f, 0, N) is dominated by a constant multiple of
_ 02 g(4)

H (e +1/2) .

) Jon it—7

SN

HU+u0)2) [ 1) u(9)*? di
when 0 <0 <n/2, and by

L.N(g)f(/f+l/2)

dg| + (M, f)(0)

J~(H+7z)/2 L{ﬁ)
(30—my2 SIn((0—¢)/2)

+ 1P+ 0)(1/DIO)
FUHu0) ) [ 170 uth)' dp.

when /2 <0 < 7.
Suppose 0 <8 < m/2. As in the proof of Theorem 2,

Jo(f, 0, N)< Csy(0) =2 [|(Hg)(O)| + [(S' +5%)(1g1)1(0)]

< CSN(Q) —(x+1/2) |:

(0—¢)/2)

d(/)‘ + (M, )O)+ (P +0)(1/D]1O)

(44)

I”/z.g(‘ﬁ)d¢‘+[51(|g|)](0)}'
o2 sin(
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o> —102,
w(0)" 1 LS ) 1(6)
<cuo [ (snd) [ oo a

%

/2
1N sin(¢,2)

# [ = |

<C{[ P+ QDO +u(0) " [ 11(9)] u(¢>‘/2d¢]
Again, if —1<a< —1/2,

cevs [V )] sin 7 2(912)
s a0 <c | v

f”/z | f(9)] u($)">
1/ SIn(0/2) + sin(¢/2)

do

dp

[TVl as).
But,
sy (071 [T 1) ()2 g < CTL+u(0) 7] [ 100 )" .

Moreover, when 0 <6< 1/N,

s s sn [N ()] sin®*3(4/2)
S ()= RN JO n(072) + 42 d¢

<ev= 2 [ |06 uth) o

0

<M, f)(0)

and

e [ L) u(g)'?
Sw(0) - L/N sin(60/2) + sin( (]5/2)611(]j

o+ i i
< CN*+172 L/N /()] u($)"? sin(¢/2)
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log 2(Nm/2) 2k/N d¢

seNtEl Y[ @l g

log 2(N7/2)

<C Z 2(m+l/2)k<N
k=1

20042 2k/N
)L e ao
< C(M,/)(0)
when /N <0 <n/2,

Cwrtnrassn [V 1S(@)] sin®2(¢/2)
Su(0)"CTIEN /Jo sin(6/2) + sin(¢/2)

dgp

o\ 0
<c(sing) a0y 2 [0 (0w dp
< CIP(1/110),

and

SN(H)f(zx-H/Z)Jn/z |f(¢)| u(¢)1/2 dé

1~ sin(0/2) 4 sin(¢/2)

o\ 0
<c|(sing) w0 [ 1) ueas
2 N

_ip (7P 12d7¢
+ul0)"R [ 1) sin(¢/2)}

< CL(P,+ Q)1 /D 1(0).
The asserted upper bound for J,(f, 6, N), n/2< 0 <m, is obtained in the
same way.

We now prove (41) for k=2 using (44) and (45); the proof for k=3 is
similar. We have

HMufJf_(Pl +Q1+P2+Q2)f”um( pu)\C”fHLpl( Pu)s

by (15)-(19), while

(1) [ 1) ) g

< ¢ HfHLpl(wl’u)

LPP(wPu)

has been shown in the course of proving (40) for k=1.
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To obtain

SN(Q) —(x+1/2)

02 g(9)
L/z sm((O—qS)/Z)d‘ﬁ‘X(o,n/z)((ﬁ)

< C ”f“ LPY(wPu)»

LPF(wpu)

we again take advantage of the fact that it suffices to consider f =y,
Ec(0,7/2). We write gi=g-y,, I,=(m/2""23z2"""), k=1,2,..,
whence

wr (g =
jo/z md¢‘1(o,n/2)(9)—k§1 (Hg)(0) - x,(0),

Jp = (r/2%+1, 7/2%). Therefore,

where

F”/Z g(¢)

le{ﬁe(o, 72): x0T 0=

dqﬁ’ > }v}
and

HY={0eJ,:sy(0)" V2 |(Hg)(0)| > A}.
At this point we observe that w”u satisfies the 4 condition

@<C [ w(0)” u(0)do"
1 S w0y uoydo )

with C> 0 independent of the interval /< (0, ) and the measurable set

Ec 1 in view of (15) and the fact that u satisfies 4 . The arguments of
[21, Chapter XIII] then yield C >0 for which

”Hgk HLP%(WPM) < C HMgk HU”‘(wl)u)
< C HMugk HIJ"L(WI’u) > (46)

k=1,2, ...
Letting

Gi=1{0e(0,7/2): (Hg,)(0) > L,
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A =min[ s y(7/25), sy (/281 ]* V2 = ¢, A, we have

x{[ mevuwym<xﬂj Ww(0)? u(0) dO
HY G}
< P NHGN ooy
< Cc;p HMugk H{P‘l(wﬂu) by (46)
<

Ce gl Zrgurny by (15)

<cf w(0)? w(0) do,  k=1,2, ...

EnI
Thus,

r
SN(O)f(och 1/2)

g(9) ‘

L}/z sin((0—¢)/2) 9| 4.0.72(0)

LPP(wPu)
<CY [ w0y u0)do=C [ w0) u0)do=Clxzl iy,
k=1 EnI E

and we are done on taking pth roots.

Necessity. First we observe (15) follows from the consequence

s “ ) LPo(wPu) X LY (wPu)
I/, ) <Clfl

of (8), together with (34), on using the argument of Proposition 1 in [8].

Next, we show (8) implies (17) to illustrate the method of proving the
necessity of the remaining conditions. To this end, fix 0€(0, z/2B) and
Ec(0,7/2), E a finite disjoint union of intervals, with B>3/2 to be
specified below. Consider functions 0 < f =f" y and define 7y and f), as in
(39) and (40), respectively. By (8), we have

[ TNgHLl’“’(wl’u) <C HgHLl'l(wl’u)s g€ Lpl(WP”)Q

further

| gx(c0s )1 S() uly)
(TN = pxesteos Pl | oo

lgy(eosoy] | 12rerleos DLAD k)
" & sin((y +6)/2) sin(¥ — 4)/2)

= Cn(d)—Dy(¢)  ¢€(0,0).

diy

dy
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Arguing as in the proof of Theorem 2, we obtain, for a sufficiently large
N (in particular, N>2/B0) two sets of pairwise disjoint intervals
I1,=1,N)c(1/BN,0), ¢(=1,2,..0,={o(N) and Km Km(N)cE
m=1,2,..,my=myN ), such that U/,] 31, >(1/BN, 0), 3K, D E,

31,, 3K,, intervals of type (i)' ; moreover, when </)eF U1,
"peG U’”71 m»s

| ¢ ¢
|pN+1(COS¢)|>3\/;2 Hsin T2 S cos T S

and

|p(]\°;ill’ﬁ+l)(COS l//)| 2% \/§21+ﬂ+2 sin—(a+3/2)%COS—(/}+3/2)%_

Restricting attention to f =1y, the latter yield
cn(d) =k Sin‘(““/z)% f sin® y [pig 1A+ D(cos )| f(y)(sin ) 2
G

« sin2@+ D +1 %Cosz(ﬁ+l)%d¢

stinf(ochl/Z)?j f(l//) sin"‘*m!dkﬁ, ¢€F’
2Jg 2
which, together with
Dy(¢) <Ksin~+1? %f ) sin==12Y .
G
gives

(Tnfa)0) =k Sin*(“+1/2)§JG 7)) sin“‘ﬂﬁ{ Ik(i} m

>k/2 sin—<“+1/2)§f ) sin“_l/zgdlﬁ VeF,

G
when (K/k)-(1/B) <2 or B>2K/k. Thus, choosing B=2K/k +3/2,

C Hf')(c“u'(wﬁu) = | Tyfy 'XF”LN‘ wPu)

—(a+1/2) ¥ ¢

k
> lsin 5 ()

LP®(wPu) *G

! See page 19.
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Taking the supremum over f with || /- ¢l 11w = 1, We obtain

u(g)~'"?

Hu(d))71/2}{F(¢)|‘Lﬂ%(wﬂu) sin(¢/2)

W) 76(8) <C

LV ©(wPu)
which means

— 1

1/p—1
 wragras| @ ey dp] [ wor ) ds)
1/2 d¢
< ) sm(g2) < € (“47)
for all H < F. In particular, set H=(6/2, 8) n F and observe that

[ wigyrugydp< [ wiy (@) ds,

0/2 H

by (15), whence (47) implies

—12 12 d¢ sG d¢
u(0) " L u(¢)" sin(¢/2) Ch()/z W(¢)p ¢) d¢

and so (17), since (15) ensures w”u is doubling, as is u(¢)'/?/sin(¢/2).
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